
JGLRNAL OF CGM?UPAT:ONA~ PHYSICS 92, 3455368 (159 1)

eferred-Correction Multigrid A
ew Smoother for the Navier-

PAOLO LUCHINI

Istituto di Gnsdinantica, Fmoitb di Jngegnekz.
Unirersit~ qf hFupies, itcti\

Received February 6, 1989; revised December 5. 1989

An algorithm which brings together the techniques of multigrid and deferred i-orrection
through their common relationship with imperfect Newton iteration manages to combine the
ease of calculation of a low-order with the accuracy of a high-order difierence approximation
of any given differential-equation problem. A stable explicit Gauss-Seidel relaxation algorithm
for the IJ-~ Navier-Stokes equations based on an appropriate kind of “upwinding” of $- as
wel! a.s ,-derivatives. especially developed for use as a muitigrid smoother in t’nts coniel?. ts

presented and the complete algorithm is tested on the standard conservative second-order
discretization of the driven-cavity problem. I 1991 Acsdax Prrii. inc.

1. INTRODUCTION

The numerical solution of a set of differential equations is composed of two
phases: the discretization of the original problem, that is. the identification of a new
problem in a finite number of unknowns that is, in a suitable sense, an approxima-
tion of the problem originally posed in a continuous variable space, and the solu-
tion, which is in turn generally approximate, of the discretized prob!em. Several
techniques are in use both for the discretization of the problem {e.g., difference
approximations based on Taylor expansions or splines, finite elements, boundary-
integral methods, spectral methods) and for the solution, necessarily iterative when
the equations are nonlinear, of the discretized problem (e.g.? variationai methods,
Newton iteration with direct inversion of the derix:ative matrix, and Gauss-Seidel,
ADI, and multigrid relaxation methods).

The method of solution is hardly ever studied separately from the technique of
discretization but they are, indeed, distinct aspects of the problem, since t
involves finding as accurate as possible a discrete approximation of the given
differential equations whereas the former involves finding a rough approximation of
their solution that may be fast to compute and just good enough to yield a stable
feedback loop.

This observation is at the basis of deferred-correction techniques, which consist
of combining an accurate discretization of the given problem with an iterative solu-
tion method devised for a lower-order approximation in such a way as to solve the

349
0021-9991 ‘$1 93.K

3.50 PAOLO LUCHINI

former through the latter. In particular, a perfect candidate for the lower-order
solution algorithm is one based on the multigrid approach, as will be illustrated in
the next section. A computer code designed on these principles keeps the two
aspects of accuracy and speed of execution separate down to program structure,
and allows an efficient solution method to be applied to a wide range of finite-
difference and finite-element discretizations by replacing a single subroutine which
basically contains the discretized equations only. As a side-effect of this separation
of functions, the speed of execution becomes more or less independent of the form
of the discretized equations, thus making complicated and previously unaffordable
high-order formulations very appealing.

A multigrid algorithm needs an underlying relaxation procedure to be used as a
“smoother.” The degrees of freedom offered by the separation between the form of
the discretized equations which is finally solved and the one which is used inside
the relaxation algorithm has allowed us to taylor this form to the needs of
the smoother. Rather than adopting a pre-existing solution procedure of the
Navier-Stokes equations as a smoother, as done in most previous multigrid codes,
we have developed an ad hoc first-order discretization, based on a suitable
“upwinding” of I,& as well as i-derivatives in the vorticity-transport equation, which
would be of little use as a stand-alone algorithm but is very well suited as a
multigrid smoother because it makes a Gauss-Seidel relaxation loop stable at all
Reynolds numbers.

The plan of the paper is as follows. In Section 2 we shall illustrate a similarity
between the deferred-correction and multigrid approaches which gives a hint that
they should work well together in a combined method. In Section 3 we shall
describe the resulting general method. which turns out to be similar to those
developed in [l-4]. In Section 4 we shall present the new discretization of the $-;
Navier-Stokes equations which lends itself to Gauss-Seidel relaxation and was
expressly devised for the multigrid environment; and in Section 5 we shall give some
results of applying the proposed algorithm to the well-known driven-cavity test case.

2. THE CONNECTION BETWEEN DEFERRED CORRECTION AND MULTIGRID:
IMPERFECT NEWTON ITERATION

Before describing the more practical advantages of bringing together the techni-
ques of deferred correction (also called “defect correction”) and multigrid into a
combined algorithm, let us point out a philosophical reason to do so: they can both
be seen as instances of a single technique which may be called imperfect Newton
iteration.

Basically all the existing methods for the numerical solution of differential equa-
tions were initially developed for linear boundary-value problems and consist of
algorithms for the inversion of matrices of a more or less specialized form. The
extension of these techniques to nonlinear boundary-value problems is always
explicitly or implicitly based on Newton iteration. (With one important exception:

DCMG ALGORITHM FOR N-S EQUATIONS 35:

variational procedures based on the minimization of a convex functional. A convex

functional which is minimized by the solution, however, is not available for 28
problems and in particular not for the Navier-Stokes equations.)

Newton iteration is the well-known technique according to which the solutioc of
a nonlinear equation system NL(x) = 0 in the vector of unknowns x is pursued by
iteratively linearizing the original problem in a neighbourhood of a ten&v:
approximate solution and solving the linearized problem for a new approximate
solution until a satisfactory approximation is attained. The process may be
represented schematically as follows:

ALGQRITHM A (Newton iteration).

given equation NL(x) = 0 and L linearization (differential j of NL,

solve NL(x,) + L(6x) = 0 for 6x,

Iterate x,, + i = x,, - L-‘[NL(x,)].

The difficult part in Newton iteration is the inversion of the linear operator L
(i.e., a matrix). If direct (Gauss) inversion is to be used for this purpose the very
satisfactory convergence rate of Newton iteration, which is quadratic, Le. charac-
terized by an error asymptotically going down with iteration number :I as
exp(-2”): is more than offset by the computation time of matrix inversion, which
increases with the number of unknowns N as IV’. and by the storage, proportional
to N’, necessary for the matrix elements. When the form of the matrix L does not
lend itself to a method less time- and storage-consuming than Gauss inversion,
Newton iteration is not to be preferred to other iterative techniques.

However, there is a way to recover some of the nice convergence properties oi
Newton iteration without losing the iteration speed of other methods: to replace 5
by an approximation L’ which is amenable to a faster inversion. The restilticg
algorithm may be called imperfect Newton iteration:

ALGORITHM I3 (Imperfect Newton iteration 1.

given equation NL(x) = 0, L linearization (differential) of NL and L’ easy i:o
invert approximation of L,

SOlVi? NL(x,,) + L’(ik j = 0 for 6x,

iterate x,, L I =x,,-L’-‘[NL(x,,)].

It is clear that iVL(x,,) = 0 when x,, + , = x,, so that if the iteration converges the
problem will have been solved; on the other hand, it cannot be guaranteed, as i%
can under some restrictions for true Newton iteration, that the process Aa!/ con-
verge provided the initial guess is close enough to the solution. nor is convergence
quadratic. Nevertheless it is reasonable to expect if L’ is in some sense close to i
that the process will converge quickly, and practice confirms this expectation.
(More precisely, the theoretical condition under which the iteration can be shown
to converge is that the matrix 1 - L’-lL should have all eigenvalues less than lmily

352 PAOLO LUCHINI

in modulus; however, for a practical problem such as the Navier-Stokes equations
it is difficult to verify this condition other than by observing the convergence of the
algorithm itself.)

Although quicker than Algorithm A, Algorithm B is still formulated in terms of
matrices. One can dispense with matrices completely by replacing L’ by a finite dif-
ference of an operator NL’, of which L’ is the differential. This further modification
gives

ALGORITHM C (Modified imperfect Newton iteration).

given equation NL(x) = 0 and NL’, easy to invert nonlinear operator such
that its differential is an approximation of the differential of NL,

solve NL(x,) + NL’(x,, + 6x) - NL’(x,, j = 0 for 6x,

iterate x, + 1 = NL’-‘[NL’(x,,)- NL(x,)].

Again, it is evident from Algorithm C that NL(x,, j = 0 if x, +, = x,. Moreover,
Algorithm C can be expected to have similar convergence properties to
Algorithm B, but no matrix appears any longer.

Those familiar with either of the techniques of deferred correction and multigrid
will have recognized the above reasoning, as it is used in both.

To obtain deferred correction, just identify NL with a high-order discretization of
a given differential problem and NL’ with a low-order discretization of the same
problem. Provided a fast solution procedure exists for NL’, Algorithm C allows that
same procedure to be used for the solution of NL, by putting on the r.h.s. of NL’,
rather than zero, the “deferred correction” NL’(x,,) - NL(x,, j. Notice that, on
looking at Algorithm C alone, it is not at all apparent that such a process should
converge. It is only through its relation to Algorithm B and the fact that NL and
NL’, being different discretizations of the same problem, are expected to have
mutually close differentials, that Algorithm C may be justified.

To obtain multigrid, choose NL to be a fine-grid discretization of the given dif-
ferential problem and NL’ to be a discretization of the same problem on a coarser
grid. The foregoing reasoning may be repeated and Algorithm C allows a fine-grid
solution to be obtained using an inversion algorithm that works on the coarser
grid. Contrary to the previous case, however, care must be taken of the fact that
the coarser grid contains less information than the finer one, namely it is only able
to represent a shorter range of wavenumbers, by providing a separate procedure
(smoother) to handle the higher-wavenumber portion of the error. Fortunately
almost any relaxation algorithm has the property of dealing with high-wavenumber
error components much better than with low-wavenumber ones. Suitable restriction
and prolongation procedures must also be provided to move the low-wavenumber
part only of the solution and error between grids.

DCMG ALGORITHMFOR N~SEQUATIONS

3, DEFERRED-CORRECTION ~~LJLTIGRID

Deferred correction is used often in connection with the Navier-Stokes equations.
In fact, whereas several relaxation algorithms are known which work for an
upwinded, first-order discretization of these equations, these algorithms generally
%I when applied to a second- or higher-order discretization of the same equations,
and in particular to the standard conservative central i-i discretization we shaC
use as an example later.

However. first-order upwinded convection terms are known to produce poor,
and in some cases outright wrong [S], results in the very range of large mesh
Reynolds numbers for which they are necessary and therefore are not considered a
satisfactory solution. There are two ways out of this difficulty: to use specially
designed higher-order upwind discretizations, as for instance in [61, or to make ir
such that the properties of upwinded differences are exploited during the iterative
process but the finai converged solution satisfies a higher-order approximation! of
the differential equations, e.g., by using upstream-weighted difference schemes
[7. S] or deferred correction.

in connection with deferred correction, it should be noticed that Algorithm C as
written above involves the exact inversion of the approximate problem ?JL’ at each
iteration step. While in an iterative context it is reasonable to repiace this exact
inversion by an approximate one, such as may be provided by one or more itera-
tions of a relaxation algorithm, it is necessary, for Algorithm C to resemble Newton
ireration, that this approximation be sufficiently good. In particular, it is known
that deferred correction of the upwind to the central-difference approximation of
the $-i Navier-Stokes equations, or, for that matter, even of the advection-di%-
sion equation, does not yield a stable iteration loop if simple point-Gauss-52
relaxation is used in the place of NL’-‘. On the other hand, this technique has been
applied with success in conjunction with line relaxation and PtDI algorithms
is-1 11.

Since an accurate and fast approximate inversion of NL’ is necessary, and given
the conceptual relationship between deferred-correcaion and multigrid techniql;:s
indicated in the previous section, it becomes very natitral to roll deferred correction
and multigrid into a single combined algorithm, as was proposed in gene& in
[l., 21 and applied to the Euler equations in [3,4].

A deferred-correction multigrid (DCMG) procedure may 5e viewed i3; ;wc
complementary ways: as a deferred-correction algorithm which uses a mtiltigrid
iteration as the approximate inversion of NL’, or as a multigrid algorithm that uses
a higher-order discretization rather than an even finer grid to calculate correctIon
terms for the finest-grid equations, similar to those which are added to coarser-grid
equations in order to comply with imperfect Newton iteration (,t2lgorithar, C i. Hn
nseudacode. the outmost loop of a DCMG program is

354 PAOLO LUCHINI

ALGORITHM DCMG (Deferred-correction multigrid).

repeat
apply low-order smoother on the finest grid
restrict solution and residuals to the next coarser grid
calculate correction terms for the coarser grid (difference between coarsc-
grid and fine-grid residuals)
apply low-order smoother
restrict solution and residuals to the next coarser grid
. . . .
prolong the solution difference to the next finer grid
apply low-order smoother
prolong the solution difference to the finest grid
apply low-order smoother
calculate correction terms for the finest grid (difference between low-order
and high-order residuals)

until high-order residuals satisfactorily small.

As is seen, a DCMG code requires a standard multigrid procedure, composed of
a sequencer to handle the cascade of grids, restriction and prolongation routines,
and a smoother written for the low-order equations, with the addition of a
residual-calculating routine for the high-order equations which is invoked once per
multigrid iteration to provide deferred-correction terms.

One unique asset of the DCMG approach is the flexibility ensuing from the
almost complete segregation of the functions of providing accuracy and speed of
execution into different program modules. In particular, whereas the relaxation pro-
cedure for the low-order equations (the smoother) is the most frequently executed
piece of code and should be kept as simple as possible, the high-order equations,
in spite of being the very ones which are being solved, are used sparingly in the
calculation, their residuals needing only to be computed once per multigrid
iteration. Of course, this is quite consistent with the Newton iteration procedure,
in which residuals are only calculated once per matrix inversion, but it is a big
departure from other existing algorithms and opens some new possibilities.

In particular, a DCMG program is a sort of “black box” into which different
discretizations of the same problem may be quickly plugged in and tried out. This
capability, precious for problems in which the accuracy of one or another dis-
cretization method is questionable, is not shared by any other differential-equation
solution algorithm.

Moreover, the use of approximations of a high order is particularly convenient,
even in cases where it leads to complicated difference equations, because these
difference equations are only used moderately often for computing their residuals
and have little effect on the overall computation time. In fact, it would be quite
conceivable to adopt a DCMG algorithm to solve finite-element equations, thus
providing a much faster alternative to the traditional direct-matrix-inversion
methods.

DCMGALGORITHMFORN-SEQUATIONS 355

Let us finally remark that the deferred-correction and multigrid algorithms have
already appeared together in NavierStokes solving programs in the past [‘i&14],
but with a very different approach. In those works a complete implicit
Navier-Stokes solver, previously developed by the same QT other authors ES a
stand-alone program, which happened to exploit also the deferred-correction
technique, was inserted in a multigrid cycle for the purpose of gaining an improved
rate of convergence. In DCMG, instead, deferred correction is used outside, and in
some sense towards completion, of the multigrid cycle for the purpose of solving a
high-order difference formulation of a differential problem by adopting a vesy
simple relaxation algorithm, which would be of no use as a stand-alone unit. as a
smoother for the multigrid procedure. A smoother with these properties will be
presented in the next section.

A DCMG program for the Navier-Stokes equations with a structure very similar
to the present one. but working with primitive-variable equations and using a

ifferent smoother. has appeared very recently [1].

4. 14 NEW EXPLICIT SMOOTHER FOR THE NAVIER-STOKES EQUATIONS

A relaxation algorithm that is useful as a smoother must have the property of
damping large-wavenumber error components (those having a wavelength com-
parable to mesh size), but it is not very important how it behaves with respect to
low-wavenumber components, as those are taken care of by a different part of the
multigrid program. In addition, a smoother ought to be simple and fast, because it
is the most frequently executed piece of code. For these reasons it is generally f~ound
in connection with simple elliptic problems (s-uch as the ones governed by the
iaplace, Poisson, and biharmonic equations) that an explicit point-Gauss&&de1
smoother is preferable to more complicated line-relaxation or ADI methods [16,
Sect. 3.31, because the large-wavenumber properties of the latter are not enough
superior to those of the former to compensate for the increased computation time
per iteration.

elaxation algorithms for the Navier-Stokes equations, however, are not as nice,
and in particular, no explicit Gauss-Seidel procedure for the two-dimensional
Navier-Stokes equations in I,+-< form seems to have been found to converge at
relatively large Reynolds numbers (by which we mean Iarge enough that the
Reynolds number based on mesh size is larger than unity but not so large that the
differential equations themselves are unstable) without the introduction of inpracti-
cal underrelaxation factors: in fact, even line-relaxation procedures, which are
currently the preferred solution either in their ADI or line-Gauss-Seidel variation
(see, e.g., ES-1 1, 17, 181) converge only for the difference equations containing the
convective terms in upwinded form, which is a way of restoring a sort of diagonal
dominance into the derivative matrix. and, even so, often require the introduction

underrelaxation factors which must be given different values for di
ynolds numbers,

356 PAOLO LUCHINI

In this section we shall see how trying to understand the reason for the necessity
of these underrelaxation factors leads to the development of a stable point-
Gauss-Seidel smoother.

The two-dimensional, steady, incompressible Navier-Stokes equations in I+-[
form are

A2$=1: (la)

JzC = W$,.i,- $.d,J, (lb)

where @ and i denote the stream function and vorticity of the flow field and Re is
the Reynolds number. Two very common discretizations of these equations on a
“cross” formed by live points, which we shall denote by subscripts E, N, W, S, and
C for east, north, west, south, and center, respectively, are the second-order form
given by

k+h+IC/w+tk-4k=hZic Pa)

iE + CN + iw + is -4k = Re(ti,,i,, - tidd4, (2b)

where all first derivatives are approximated by central differences, and the tirst-
order upwind form given by Eq. (2a) together with

=ReCih- I~~sl)i~c+(I1/~s+I~~sl)iycw

+ ($EW + I+Ewl) iiw - ($,w - IhA) id47 (31

where symbols with two subscripts denote differences of the corresponding values
(e.g., $Ns = tjN - 9s). In the above equations 12 denotes mesh size, which is assumed
constant for the sake of simplicity even though all that we are going to say can
easily be extended to variable-spacing meshes. The reason why Eq. (3) is introduced
at all is that Eq. (2b), although more precise, is not fit for relaxation algorithms
because the value of vorticity at the central point cc does not appear in the convective
term (the right-hand side).

The function of the smoother in a multigrid algorithm is mainly to damp short-
wavelength components of the error, and its long-wavelength behaviour does not
really matter. This makes simple explicit smoothers preferable to implicit ones,
because the larger computation time that the latter require is not sufficiently com-
pensated for by the marginal improvement they offer in short-wavelength damping
(It is at long wavelengths that implicit algorithms really outperform explicit ones).
Another nonnegligible point in favour of choosing an explicit smoother is that the
smoother is the most frequently executed piece of code, and if it is a very simple
routine a considerable speed advantage can be obtained by optimizing its coding,
for instance, by means of an assembler, whereas such a measure is too costly in
programming time for a complicated routine. An explicit smoother is also much
better fit for parallel processing.

DCMG ALGORITHM FOR N-S EQUATIONS 354

Despite these considerations, the multigrid programs for the Navier-Stokes equa-
tions (I) that can be found in the literature (e.g., j12-14, 191) utilize imphcit
smoothers. Th.e reason is that explicit Gauss-Seidel relaxation methods for these
equations, even in upwinded form, do not converge at relativeiy high Reynolds
numbers. (An explicit smoother for the upwinded XavierStokes equations in
primitive variables has been introduced in [20] under the name of distributive
CausssSeidel (DGS) technique for the purpose of being used in a multigrid algo
rithm and has been later adopted in [21, 221. It is, however, reported to diverge in
some cases.) In fact, even implicit smoothers for the upwind equations are generally
reported [6, 12-14, 191 to require a certain amount of overrelaxation of the con-
tinuity equation (2a) and underrelaxation of the vorticity equation (3) in order to
avoid instability, which gives us a clue to what is wrong with standard upwinding.

The consideration that upwinding restores diagonal dominance !into the
derivative matrix: as set forth, e.g., in [9] and in Appendix A of [13]* is true only
If in the vorticity-transport equation vorticity only is treased as an unknown, with
a known stream-function field. This is exactly the condition that the combination
of overrelaxation and underrelaxation adopted in [6, 12-14, 191 tends to estabhst,
giving a faster smoothing rate to the stream function than to rhe vorticity. much as
though the continuity equation were solved exactly for the stream function for acy
one iteration of the vorticity distribution. (A more efficient way to achieve the same
aim wou!.d probably be to perform a larger number of relaxation sweeps on ths
continuity equation than on the vorticity equation, rather than underrelaxing the
latter.)

We are going to pursue a different approach: to seek a formulation of the dif-
ference equations that takes explicitly into account that vorticiey and stream func-
tion are to be relaxed simultaneously (any first-order formulation of the equations
may be chosen as the basis for a smoother in the DCMG context, since this choice
has no bearing on the accuracy of the solution obtained). In particular, i: may be
observed that if upwind differences are used for vorticity In the convective terms but
central ditferences are retained for stream function, as is done in the classica! for-
mulation of Eq. (3), the value of stream function at the central point $c does no:
appear in t e vorticiry equation and is necessarily determined by the ccntimuity
equation only; if, on the other hand, lateral differences (not necessarily in the
upwind direction) are used for the derivatives of stream function as well. the value
of stream function at the central point acquires a considerable dnfluence in the ‘<or-
ticity-transport equation and this influence must be accounted for In the relaxarion
algorithm. The safest way to take this influence into account in a GaussSeidei-type
algorithm is to solve the two equations for the central values of \1, and ;
simultaneously. A close look at what happens in doing so will also reveal ths
appropriate choice of the sides from which $-derivatives should be taken

Let us first of all consider the linearized form of Eqs. i 1 t5 since it is this form
which determmes the properties of the algorithm even if it does not appear
explicitly in the deferred-correction formulation. We may write a five-no%:
fi.rst-order difference equation system for this linearized problem as

358 PAOLO LUCHINI

where superscripts (0) and (1) denote base values and corrections, R,,,, and R,,,,
are the residuals of the continuity and vorticity-transport equations, which may
include the constant correction terms needed for the multigrid and/or deferred-
correction processes, and in Eq. (4b) Cl may stand for either cw or iE, ti2 for either
$s or tiN, c3 for either is or cN, and $4 for either tiw or $E, and the multipliers
SI> s2, s3, and sq equal + 1 or -1 depending on whether the first or the second
alternative is chosen in each case. It is not necessary for the present purpose to
specify exactly how derivatives Ii/j?‘, ii”‘, Ic/.\“‘, and [j!’ are discretized. Inverting
Eqs. (4) with respect to $2’ and [p’ gives

tip’= (a,b, -h2b,)/D (5a)

[p’= (4b2-a,b,)/D, (5b)

where

(64

(6b)

Va)

+~~~~‘i:l’)+~~i:P)~:l))+R,,,,~

D = 4a2 - h*a,

VJj

= 16 +-4h Re(s,$j”’ - s,$p’) - h3 Re(s,<L” - s,[lp’). (8)

Equation (8) is enlightening as to the problem of “upwinding” $-derivatives. The
equivalent of pursuing diagonal dominance, in our approach in which two
unknowns are recalculated at once, is to make the determinant D as large as
possible, so that recalculating $C and cc involves the least correction. This means
choosing multipliers S, , s2, s3, and sq, and indirectly the directions of cl, Gr, i3,
and $j which are tied to those, so that the terms s,$-t!‘), -s,~$“, -s,tjlp’, and
sqiCo) of Eq. (8 j are all positive. For the two i-derivatives the result is classical
up;inding, i.e., the side from which they should be taken is determined by the sign
of the $-derivatives; for the two $-derivatives we obtain the new result that, sym-
metrically, the side from which they should be taken is determined by the sign of

DCMG ALGORITHM FOR N-S EQUATIQNS 359

the i-derivatives. Notice that it is not correct to take G-derivatives from the same
side from which i-derivatives are taken; in fact such a solution, which we anyhow
tried out of curiosity, does not produce an algorithm any better than u~w~~d~~g
c-derivatives only does.

?t remains to be seen which full nonlinear difference approximation of Eqs. (1)
has Eqs. (4) as its linearized version. The obvious answer is to replace each
derivative by a suitable difference expression, choosing for all first derivatives laierai
differences taken from a side conforming to the above criteria. There are: however,
two drawbacks to doing so: one is that the signs of the $ and < differences deter-
mine the choice of the side from which each other should be taken, but the signs
themselves may in turn depend on this choice, causing nontrivial programming
problems; the other is that the resulting equation system is quadratic with respect
to the unknowns $o and cc (although not for all combinations of signs), and its
exact resolution involves a square root which is slow in execution. However, there
is not only one nonlinear equation corresponding to a given linearized form.
A computationally more efficient solution is furnished by the difference equation

As may be seen, in the r.h.s. of Eq. (9) the convective term is added twice and sub-
tracted once and is written the first time with upwinded i-derivatives, the second
time with “upwinded” $-derivatives (in the sense of the above discussion), and
the third time with all central differences. The net result is that Eq. (lb) is
approximated to first order, the system formed by Eqs. (2a) and (9) is haear in lclc
and Cc and has the same coefficients as Eqs. (4) and all the calculations are
straightforward.

To finish this section, a few words must be spent on the ordering of recalculation
of the Gauss-Seidel cycle. Any Gauss-Seidel algorithm, since values are put back
as soon as they are recalculated, is sensitive to the order in which data points are
traversed. Sometimes a linear order in which rows of points are scanned in strict
succession is chosen just because it is the easiest to program. Five-point difierence
equations like the ones dealt with in the foregoing, however, also allow a different
choice which in a multigrid context is more than vdorth the, slight indeed, extra
programming effort: the “hopscotch” ordering of Sheldon 1231 and Gourlay i&I]
(now more often called “red-black” ordering), whick is like alternately recalculating
points corresponding to the black and red squares of a chequerboard. Since each
“‘red” point is surrounded by four “black” points and vice versa, it is always
possible to explicitly recalculate the variables pertaining to any single point of one

360 PAOLO LUCHINI

“colour” from those of the other. Each relaxation sweep is composed of two phases,
one in which all the “black” points are calculated from the “red” ones and one in
which the “red” points are recalculated from the “black.” Notice that knowledge of
the solution at only half the points (i.e., either the black or the red) is sufficient to
reconstruct the other half exactly.

The hopscotch method has the particular merit, in a multigrid context, of not
introducing disuniformities in the spatial distribution of residuals. In fact a
Gauss-Seidel algorithm necessarily leaves the points which have been recalculated
last in a different condition from those less recently recalculated (thinking of the
iteration number as a continuous time variable, one could say that the former
points are a fraction of a step ahead of the latter) thus giving rise to perturbations
in the distribution of residuals which must be filtered out by the interpolation
algorithms used to pass from one grid to the next coarser or liner. Instead, in a
hopscotch algorithm there is a definite difference (of half a step in a certain sense)
between “black” and “red” points, but each of these two classes is homogeneous,
since all of its members are recalculated using only information coming from the
other class. Now, in a multigrid scheme in which mesh size is doubled from one
level to the next, all the points belonging to the coarser mesh happen to be of the
same “colour” on the finer one, and therefore their residuals may be transferred to
the coarser mesh by simple injection with no fear of dangerous short-wavelength
disuniformities caused by the relaxation sweep. In fact, as also pointed out in [2],
injection is particularly well suited to red-black smoothers, provided a factor of i
is applied to the line-mesh residuals before subtracting them from the coarse-mesh
residuals to account for the fact that two iteration steps are effectively performed in
going from the black to the red and back to the black points; even the theoretical
disadvantages of injection can be circumvented by considering injection as a live-
point restriction with weights of $ for the center and $ for the end points, which is
possible since when a red-to-black sweep has just been performed (assuming the
center is red) black residuals are zero. When going back from the coarser to
the finer mesh, corrections for the points falling exactly in between two points of the
coarser mesh will be calculated (by linear interpolation) as the average of the
corrections obtained for the two enclosing points. which are always one “red” and
the other “black”; corrections for the other points need not be calculated at all,
since the full values of the variables pertaining to these points will be calculated
directly from the previous ones in the following hopscotch sweep. Again a
homogeneous situation is obtained, thus avoiding the introduction of spurious
short-wavelength error components.

5. APPLICATION TO DRIVEN-CAVITY FLOW

As a test for the algorithm we programmed the resolution of the second-order
conservative finite-difference form of the Navier-Stokes equations for the driven-
cavity problem, on which a vast literature is available (e.g., [12-14, 22]), using

DCMG ALGORITHM FOR N-S EQUATIONS xi;

both constant- and variable-spacing meshes. The difference equations used are
Eq. (2a) and

where $gE, li/J.w- kyN, and $xS denote central-difference approximations of
derivatives about the corresponding points. Notice that the conservative form ! IO)
of the vorticity-transport equation uses nine rather than five points, but this is no
problem because this equation is only used in the deferred-correction phase. @or the
tangential-velocity boundary condition we used the standard Thorn [25, Sect. III-
C-2] difference formula in the smoother and the Woods [26] third-order accurate
formula, which also contains the value of vorticity at the point next to wall, in the
deferred correction. In the variable-spacing runs a one-dimensional stretching trans-
formation was applied independently to either coordinate, similar to that in Ci3].
A fixed number of smoother sweeps were performed at each multigrid level: on
trying different numbers of sweeps it was found best to perform six sweeps per ievei
when going upwards from finer to coarser Ievels and three sweeps per level when
going downwards from coarser to finer.

Figures l-4 report the streamline patterns obtained for Re = I, 100, 1300, and
5000 using a 65 x 65 point uniform grid in the first three cases and an 89 x 89 point
stretched grid in the last one. These are, of course: not different from those
presented by other authors, since the same difference equations have been solved at
convergence, and will not be discussed in detail. More interesting are Figs. 5-8,
which show the convergence history of the algorithm for the same four cases, giving
the maximum absolute values of the residuals of the continuity and vortici:y-
transport equations, on a logarithmic scale, as functions of run time in work units,
nine work units corresponding to a full multigrid cycle (one work unit per
hopscotch sweep at the finest level). It will be noticed that, just as happens for ali
the other Navier-Stokes solving programs, the residual-damping rate deteriorates
with increasing Reynolds number. This rate, however, may be seen from Figs. 5 aad
6 to be independent of mesh size, as is characteristic of a multigrid algorithm. (The
calculation with 33 x 33 points was not performed in the other two cases beca?tse
this number of points is insufficient at the higher eynolds numbers
the damping rate compares favourably with the data reported for
Fig. 1 of [la] and in Fig. 4 of [131, which were obtained from a multigri
utilizing an implicit smoother, once account is taken of the fact that their work unit
corresponds to one line-relaxation sweep and a line-relaxation sweep may take from.
2 to 4 times as long to execute as an explicit Gauss-Seidel sweep (we cannot be
very precise on this number because the two programs have not been run on the
same computer).

It must also be noted that the present DCMG algorithm converges starting from
a zero initial guess, although a somewhat better time can be obtained at the higher
Reynolds numbers by using a solution for a lower Reynolds number as a starting
point. In particular, the convergence histories reported in Figs 5-7 were obtained

362 PAOLO LUCHINI

FIG. 1. Streamline pattern of driven-cavity flow at Re = 1 calculated on a 65 x65-point uniform
mesh.

FIG. 2. Streamline pattern of driven-cavity flow at Re = 100 calculated on a 65 x 65-point uniform
mesh.

DCMG ALGORITHM FOR N-S EQUATIONS

FIG. 3. Streamline pattern of driven-cavity flo\c at Re = 1000 calcubed on a 65 x @-point uniform
mesh. For the sake of clarity. streamline spacing in the corner vortices ar?.d in the main fiow has been
chosen diffrrently,

FIG. 4. Streamline pattern of driven-cavity flow at Re = X00 caictiiated oc an 89 x89-p&1:
stretched mesh. Streamline spacings in the corner vortices and in the mai? 9ow are diKerer?t.

364 PAOLO LUCHINI

0 Work Units 150

FIG. 5. Convergence history of the calculations performed at Re = 1 on 65 x 65 and 33 x 33-point
uniform grids. R, and R; stand for the maximum-absolute-value residuals of the $- and (‘-equations,
respectively.

starting from zero. It may be noticed that for Re = 1000 convergence is slower in
the beginning part and then speeds up once a close enough approximation has been
attained, so that indeed a better time would have been achieved if the calculation
had been started from a previous solution at a lower Reynolds number. This has
been done in the last case, Re = 5000 reported in Fig. 8, where the first rapidly
oscillating part refers to the calculation initially performed by periodically
increasing the Reynolds number and the regular part refers to the time when the

103

_-
0 Work Units 250

FIG. 6. Convergence history of the calculations performed at Re = 100 on 65 x 65 and 33 x 33-point
uniform grids.

DCMG ALGORITHM FOR N-S EQUATION5 365

‘2 Work Units aoo

FIG. 7. Convergence history of the calculation performed at Re = 1QOZ on a 65 x 65-point uniform
grid.

Reynolds number was eventually settled at 5000. Even in this case, however, the
solution does converge starting from zero, although very slowly.

Finally, Figs. 9 and 10 report the streamline patterns obtained at Re = 1000 for
the smoother alone, with no deferred correction, and the standard upwind vorticity
equation (3). (The latter was obtained by simply substituting E (3) for Eq. (10) ir.
the deferred-correction procedure.) Observing how different bo of these diagrams
are from Fig. 3 gives a further confirmation, if one is necessary, of the inadequacy
of first-order difference approximations for the resolution QE Navier-Stokes
problems.

10-4 I I I
0 Work Units 403

FIG. 8. Convergence history of the calculation performed at Re = XKKI on an 89 x 89 point stretched
grid.

366 PAOLO LUCHINI

FIG. 9. Streamline pattern obtained at Re = 1000 on a 65 x 65 point mesh
smoother equations with no deferred correction added.

from the first-order

FIG. 10. Streamline pattern obtained at Re = 1000 on a 65 x 65 point grid for the standard upwind
first-order discretization.

DCMGALGORITHMFORN-SEQUATIONS 357

6. CONCLUSIONS

Bringing together the techniques of multigrid and deferred correction, through
their common relationship with imperfect Newton iteration. yields an algorithm
which combines the ease of calculation of a low-order smoother with the accuracy
of a high-order difference approximation. A DCMG algorithm takes two difference
formulations of the same problem, one accurate but difficult to cope with and
another low-order but such that an easy and fast relaxation method is available,
and by an imperfect Newton iteration process manages to sotve the high-order
equations using a smoother developed for the low-order ones.

The peculiarity of the DCMG algorithm is that, although the high-order
equations are eventually solved, they appear only in a single residual-caiculat~~g
routine which is executed once per multigrid cycle. There are two consequences: Ihe
execution speed of the algorithm is very little influenced by the complexity of the
difference equations, so that high-order approximations are particularly convenient:
and it is quite easy to test different approximations by simply writing rhe relevant
equations in that single procedure.

Ar, explicit smoother has been presented for rhe I)-; Wavier-Stokes equatiom
which uses an appropriate kind of “upwinding” of $-derivatives in the vortiaity-
transport equation to achieve stability at relatively high Reynolds numbers. This
smoother is simple and particularly well suited to the multigrid environment, and
it contains no parameters, such as overrelaxation or underrelaxation factors, that
must be adjusted to different values for different Reynolds numbers. The hopscotch
ordering of the Gauss-Seidel relaxation procedure ensures ihat no spurious
disuniformities of the residual distribution are introduced, thus allowing simpler
interpolation formulae to be used for passing data from one to the next mdttgrid
lW&

In the application to driven-cavity flow the DCMG algorithm has proven to
yield consistent results at all Reynolds numbers up to 5000. Smce DCMG also has
a relatively simple program structure. it may be considered a general-purpose
Navier-Stokes solver.

Future applications of this method may include the study of higher than second-
order formulations of the Navier-Stokes equations and rhe fast resolution of fin&-
element formulations, in addition to the resolution of other differential problems, of
a physical nature unrelated to the Navier-Stokes equations, that have the common
characteristic that a low-order difference approximation is unreliable but a higher-
order one is hard to solve.

ACKNOWLEDGMENT

This research was supported by the Italian Ministry of Public Education

368 PAOLO LUCHINI

REFERENCES

1. W. HACKBUSH, Rev. Roumaine Math. Pures Appl. 26, 1319 (1981).
2. W. HACKBUSCH, Multi-Grid Methods and Applications (Springer-Verlag, Berlin, 1985), Chap. 14.
3. P. W. HEMKER, in Multigrid Methods II, edited by W. Hackbusch, Lecture Notes in Mathematics,

Vol. 1228 (Springer-Verlag, Berlin, 1986), p. 149.
4. S. P. SPEKREIJSE, in Multigrid Methods II, edited by W. Hackbusch, Lecture Notes in Mathematics,

Vol.1228 (Springer-Verlag, Berlin, 1986), p. 286.
5. J. C. STRIKWERDA, .I. Comput. Phys. 47, 303 (1982).
6. R. K. AGARWAL, AIAA Paper 81-0112, 1981 (unpublished).
7. G. D. RAITHBY A.ND K. E. TORRANCE, Comput. Fluids 2, 191 (1974).
8. P. LUCHINI, 1. Compu~. Phlx 68; 283 (1987).
9. P. K. KHOSLA AND S. G. RUBIN, Comput. Fluids 2, 207 (1974).

10. M. NAPOLITANO, Int. J. Num. Methods Fluids 4, 1101 (1984).
11. M. NA~OLITANO AND R. W. WALTERS, AIAA J. 24, 770 (1986).
12. M. NAPOLITANO, AIAA J. 24, 2040 (1986).
13. J. H. MORRISON AND M. NAPOLITANO, Comput. Fluids 16, 119 (1988).
14. U. GHIA, K. N. GHIA, AND C. T. SHIN, J. Comput. Phys. 48, 387 (1982).
15. M. C. THOMPSON AND J. H. FERZIGER, J. Comput. Phys. 82, 94 (1989).
16. A. BRANDT, Math. Comput. 31, 333 (1977).
17. S. G. RUBIN AND P. K. KHOSLA, Comput. Fluids 9, 163 (1981 j.
18. J. S. BRAMLEY AND D. M. SLOANE, Comput. Fluids 15, 297 (1987).
19. G. LONSDALE, J. S. BRAMLEY. AND D. M. SLOANE, J. Comput. Phys. 78, 1 (1988).
20. A. BRANDT AND N. DINAR, “Multigrid solution to elliptic flow problems,” in Numerical Methods in

PDEs, edited by S. V. Parter (Academic Press, New York, 1977). p. 53.
21. L. FUCHS AND H.-S. ZHAO, Int. J. Num. Methods Fluids 4, 539 (1984).
22. S. SIVALOGANATHAN AND G. J. SHAW, Int. J. Num. Methods Fluids 8, 417 (1988).
23. J. W. SHELDON, “Iterative Methods for the Solution of Elliptic Partial Differential Equations,” in

Mathematical Methods .for Digital Computers (Wiley, New York, 1962).
24. A. R. GOURLAY, J. Inst. Math. Appl. 6, 375 (1970).
25. J. P. ROACHF, Computational Fluid Dynamics (Hermosa, Albuquerque. NM, 1976).
26. L. C. WOODS, ilero. Q. 5, 176 (1954).

